


Preface

The application of quantitative modeling methods to the acoustics of speech
sound production underwent a major advance with the work of Gunnar Fant.
His book, Acoustic Theory of Speech Production, together with his continuing
work and that of his students and colleagues in the 1960s, 1970s, and 198Os,
has been a major stimulus to raising the field of acoustic phonetics toward
the level of a quantitative science.This book attempts to build on this earlier
work of Fant and others over these decades.

The aim of the book is to present a theory of speech sound generation in
the hwnan vocal system. The acoustic aspects of this theory are grounded in
a representation of speech sound production as the creation of sound sources
in the vocal tract and the filtering of these sources by the vocal tract airways.
The sources can be of various kinds, including the quasi-periodic laryngeal
source, noise due to turbulent airflow, and transient sounds. Since the articu­
lators move with time, the sound sources and the filtering also change with
time. Examination of the time-varying sources and filtering leads to the
observation that some aspects of the transformation from articulation to
sound are categorial. That is, the types of sound sources and the filtering of
these sources can be organized into classes. These classes are closely related
to the discrete linguistic categories or features that describe how words
appear to be stored in the memory of a speaker or listener. The theme of this
book is to explore these relations between the discrete linguistic features and
their articulatory and acoustic manifestations.

The book begins with a review of the anatomy of the speech production
system, and a discussion of some principles relating airflows and pressures in
the vocal tract. The next four chapters describe mechanisms of sound source
generation in the vocal tract, present theories of the vocal tract as an acous­
tic resonator excited by these sources, review some principles of auditory
psychophysics and auditory physiology as they may be relevant to auditory
processing of speech, and present an introduction to phonological repre­
sentations. With these five chapters as background, the remaining chapters
are devoted to a detailed examination of the vowels (chapter 6), the con­
sonants (chapters 7 to 9), and some examples of how speech sounds are
influencedby context (chapter 10).



Uttle attention is given to the description and modeling of the production
of sounds in languages other than English. The aim is not to be complete,
even for the sounds of English, but rather to present an approach to model­
ing the production of speech sounds in general. An attempt is made to show
that, when reasonable assumptions are made about the physiological param­
eters involved in producing a sound sequence, acoustic theory can make
predictions about the sound pattern, and these predictions agree well with
the measured pattern. A goal for the future is to extend this modeling eHorl
to a wider variety of speech events across languages, and to examine not
only the broad acoustic characteristics of diHerent sounds but also their vari­
ability across speakers and across contexts.

The book is intended to be useful to speech scientists, speech pathologists,
linguists with an interest in phonetics and phonology, psychologists who
work in areas related to speech perception and speech production. and engi­
neers who are concerned with speech processing applications. This book has
evolved from notes for a graduate course in Speech Communication at the
Massachusetts Institute of Technology. The course is taken by students in
engineering and in. a graduate program in Speech and Hearing Sciences.
Some students in linguistics, cognitive sciences, and medical engineering also
attend the course.

The writing of this book has benefited from the advice, guidance, and
research collaboration of many people. One of these was the late Dennis
Klatt, whose ideas have influenced a generation of speech researchers, partic­
ularly those concerned withspeech synthesis and speech perception. Others
were Sheila Blumstein, Gunnar Pant, Morris Halle, Arthur House, Jay Keyser,
Peter Ladefogeci Sharon Manuel, and IoePerkell. Interaction with these col­
leagues was always a pleasure and a learning experience. Special thanks go
to Peter Ladefoged for his comments on the entire manuscript, and for his
encouragement. This writing project was also helped significantly by com­
ments and insights of many students over the past decade or two.

Several people were involved in the details of preparing the manuscript
and the figures, and their contributions are acknowledged with thanks. I am
especially grateful for the help of Arlene Wint in preparing many drafts of
the class notes that evolved into this manuscript. I thank Marie Southwick
for her role at an earlier stage of the writing. The help of Corine Bickley and
Mark Hasegawa-Johnson in performing the calculations for some of the fig­
ures is gratefully acknowledged. Assistance in checking the manuscript was
provided by Marilyn Chen, Ieung-Yoon Choi, Aaron Maldonado, and
Arlene Wint. The figures were the expert work of Bob Priest and Rob Kassel.
Many of the figures containing spectrograms and spectra were prepared
using software developed by Dennis Klatt.

Much of the research described in the book was supported by grants from
the National Institutes of Health and by funds from the C. J.LeBel Foundation.
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1 Anatomy and Physiology of
Speech Production

1.1 COMPONENTS OF THE SPEECH PRODUCTION SYSTEM

For the purpose oof discussing sound generation, it is convenient to divide
the speech production system into three parts: (1) the system below the
larynx, (2) the larynx and its surrounding structures, and (3) the structures
and the airways above the larynx. These components of the speech produc­
tion system are illustrated schematically in figure 1.1. During speech produc­
tion, a constriction is usually formed in the airways at the level of the vocal
folds, located within the larynx. This constricted region, which is just a few
millimeters long, is called the glottis, and it forms the dividing line between
the subglottal system and the supraglottal system. For the production of
most speech sounds, the subglottal system provides the energy in the air­
flow, and the laryngeal and supraglottal structures are responsible for the
modulation of the airflow to produce audible sound. As we shall see, the
energy for some sounds is obtained by trapping air within an enclosed space
above the larynx, and expanding or contracting the volume of this space.

In the following sections we review some of the main features of the
structures that are used for speech production. A more comprehensive treat­
ment of the anatomy and physiology of speech production can be found in a
number of books, including Dickson and Maue-Dickson (1982), Zemlin
(1988),Oand others.

1.1.1 The Subglottal System

Immediately below the glottis the airway consists of a single tube, the tra­
chea, which has a cross-sectional area of about 2.5 cm1 and a length in the
range of 10 to 12 cm for an adult speaker. The trachea branches into two
bronchi, each with about one-half the cross-sectional area of the trachea, and
these bronchi in turn bifurcate into a series of successively smaller airways.
These airways ultimately terminate in alveolar sacs which lie within the
lungs. The lungs are contained within the chest cavity, and the lung volume
can be caused to expand and contract by increasing or decreasing the vol­
ume of the chest cavity. The vital capacity is the maximum range of lung
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vibrating tissue canbe asswned to be about one-halfof the mass of the 2.5-mm
depth of tissue. If we take the density of the tissue to be 1 gmjcm3, then the
effective mass of the vocal fold is about 0.125 x 0.2 ~ 0.025 gm/cm. For a
male voice, the vertical length is about 0.3 cm and the depth is about 0.4 cm,

so that the effective mass per unit length is about one-half of the total mass
per unit length, that is, about 0.06 gm/cm. The mechanical compliance per
unit length is about 3 x 10-5 cm2jdyne. As figure 1.11 shows, these esti­
mates of mechanical compliance can vary over a factor of 2 or more.

For a linear mass-spring system with mechanical compliance C and mass
M, the natural frequency is given by f = 1/(2nJMC). The values of com­
pliance and effective mass estimated here lead to natural frequencies of about
200 Hz for adult female vocal folds and about 120 Hz for adult male vocal
folds. These values are in the expected ranges for adult speakers.

The vocal folds are also characterized by loss, and this loss can be described
in terms of an effective acoustic resistance. Measurements of damping of the
vocal folds when they are vibrating freely and are not under compression
have been made by Kaneko et al. (1987). Their results show a Q of about 4
for a resonant frequency of 100 Hz, and about 7 at 200 Hz. These 6ndings
translate into an effective resistance per unit length of the vocal folds of
about 8 dyne-sjcm2 for male vocal folds and about 4 dyne-s/cnr' for female
vocal folds.

As the vocal folds are elongated by, say, 20 to 30 percent, the value of Y
increases by about a factor of 2 for transverse displacements of the lamina
propria, and increases much more for the inner muscle layer, probably by a
factor of 4. These changes lead to a decrease in mechanical compliance by
a factor of about 3 and a decrease in effective mass by about 30 percent,
resulting in an increase in natural frequency by a factor of about 2. In effect,
as the vocal folds are elongated, the mechanical compliance and mass are
determined by a thinner portion of the vocal fold surface.

For some conditions that occur in speech production, the vocal folds are
pressed together, so that the tissue is under compression. Application of a
force to the tissue leads to a flow of the viscous fluid within the vocal fold
through the porous and compliant solid material that. forms the body of the
fold. Mow et al. (1984) and Lee et al. (1981) discuss this process for articular
cartilage, which is expected to have properties similar to the vocal folds. The
consequence is that there is a viscous force that resists the applied force. This
viscous force appears to be large compared with the inertial force associated
with the mass of the structure. Thus when the vocal folds are under com­
pression it is possible to neglect the inertial force, and to characterize the
vocal fold by a mechanical compliance and a mechanical resistance. It is esti­
mated that the effective mechanical resistance per unit length of the vocal
folds when they are under compression is about 60 dyne-s/cm' for male
vocal folds and about 30 dyne-sjcm2 for female vocal folds. Much more
research is needed to obtain more adequate data on the dynamic properties
of the vocal folds when they are under compression.

Chapter 1
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A more detailed discussion of the physical properties of the vocal folds
and their relation to the mechanism of sound generation at the larynx is
given in chapter 2.

1.1.2.3 Laryngeal Structures Above the Vocal Folds Immediately
above the point on the thyroid cartilage where the anterior ends of the
vocal folds terminate, a flat cartilage-the epiglottis-is attached, as shown
in figure 1.5. This cartilage is about 3 on long in a vertical direction, and
about 2 cm wide at its widest point (for an adult), and it forms an anterior
surface for the airways. The upper and lateral edges of the epiglottis are
attached by ligaments to the apexes of the arytenoid cartilages (see figure
1.8). This ligament constitutes the upper edge of a sheet of tissue that,
together with the epiglottis, forms a cylindrically shaped tube above the
vocal folds. This tube has a length ranging from 2 to 4 on and a diameter in
the range of 1 to.2 on for an adult, and opens into the pharynx at its upper
end. •

Figure 1.5 shows the position of the hyoid bone, which is located directly
above the thyroid cartilage. This bone is open at the back, and forms a par­
tial ring that surrounds the front and sides of the lower pharynx. Projections
of this bone at the posterior ends of the two sides attach through ligaments
to the upward-projecting prominences on the thyroid cartilage. A membrane
connects the hyoid bone and the upper surface of the thyroid cartilage.

1.1.2.4 Extrinsic Laryngeal Muscles Surrounding the entire larynx
structure is the inferior pharyngeal constrictor muscle. Contraction of this
muscle appears to narrow the larynx tube and the lower pharynx, and to
contribute to narrowing the opening formed by the ventricular folds. Several
other muscles connect between the larynx and structures external to the
larynx, and these serve to stabilize tpe larynx and also can influence the
configuration of the glottis and the state of the vocal folds. The sternohyoid
and sternothyroid muscles, shown schematically in figure 1.12, attach to the
sternum below the larynx, and contraction of these muscles draws the larynx
downward. The figure also shows the thyrohyoid muscle, which is an exten­
sion of the sternothyroid muscle in the superior direction. Various muscles
are attached between the hyoid bone and structures superior to the larynx,
particularly the stylohyoid muscle and the anterior and posterior bellies of
the digastric muscle, as described later in section 1.1.3. Contraction of these
muscles can draw the larynx upward.

Downward displacement of the larynx causes the wide posterior surface of
the cricoid cartilage to slide along the cervical spine. It has been pointed out
by Honda et al. (1993) that the curvature of the cervical spine in this region
causes the anterior surface of the cricoid cartilage to tilt forward as this
downward movement occurs. The effect is shown schematically in figure
1.13. This tilting movement of the cricoid cartilage causes the angle between
the thyroid and cricoid cartilages to increase, resulting in a decrease in vocal

Ana~omy andPhysiology of Speech Production





































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































latory and acoustic properties of segments in stressed CV and VC syllables,
but other contexts can -lead to significantly different properties, particularly
in the acoustic representation. A second observation is that, as long as the
articulatory gestures associated with the various features of a segment are
implemented, there are usually acoustic consequences of these gestures that
permit the features to be recovered from the sound. These acoustic con­
sequences and their representation in the peripheral auditory system can be
predided from articulatcry-acoustic-auditory relations of the type described
in chapters 1 through 4. Finally, although it can be argued that words are
stored in memory in terms of segments and features, a speaker may modify
some of these features in casual speech. However, .there are strong con­
straints on the types of feature modifications that are allowed. A listener
must resort to knowledge of the language at levels above the segment and
feature to recover the words from such casually produced utterances.

581 Some In8uences of Context on Speech Sound Production



Notes

Chapter 1

1. The acoustic relevanceof thisparameter derives from the expressionfor the acousticmass of
,a short tube, MA = pt/A, where p =density of air, I =length of tube, and A =aoss-sedional
area of tube.

2. The meaning of modal ooicing is discussed in more detail in section 2.1.

3. The estimationsof the glottal opening for voiced and voiceless fricative consonants are based
on several kinds of indirect evidence.Simultaneous records of subglottal pressure and intraoral
pressure during fricative consonant production (Ladefoged. 1963) show that the intraoral pres­
sure is slightly less than the subglottal pressure. indicating a small pressure drop at the glottal
constriction. Furthennore, the more extensive data on intraoral pressure in the absence of sub­
glottal pressure records (Hixon, 1966; Arkebaueret al.• 1967) always indicate that the intraoral
pressure is somewhat below the subglottal pressurethat is nonnally used in speech.

4. It has been observed by Peter Ladefoged (personalcommunication, 1997) that in a language
such as Pirahi. a sequenceof three consecutivevowels can have alternating tones in which the
time between high tone peaks is usually about 150 ms (e.g., the word lbaaati, to make a path).
suggesting that the minimum times given above could be revised downward.

Chapter 2

1. The effectivemechanical compliance of the lower mass when the upper mass forms a com­
plete closure is given by Ci = CtC,/(Ct + C,). where Ct and C, are the mechanical compliance
of the lower mass and the coupling compliance between the two masses. respectively. as shown
in figure2.2.

2. The factor of 2 takes into account the contribution of positive and negative frequencies.

Chapter 3

1. When the cross-sectional area changes abruptly over some portion of the length of the vocal
tract, the wavefronts can deviate from plane waves. indicating the presence of higher modes of
propagation over a limited region of the vocal tract. These higher modes can modifyslightly the
analysisthat is based on simpleplane wave propagation, but the modification is usually small.

2. Sometimes the use of formAnt is restricted to natural frequencies of the vocal tract proper
when there is no coupling to the nasal cavities. In order to avoid confusion, we willnotuse the
tenn in referenceto the natural frequencyof a configuration with nasal coupling.
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3. In order to focus on the effects of fonnant frequency changes on the shape of the spectrum.
the fonnant bandwidths in figure 3.5 have been set at a constant value of 80 Hz. As will be
shown in section 3.4, several factors cause the bandwidth to change.depending on the fonnant
frequencies and the vocal tract shape.

4. Strictlyspeaking. the criterionthat must be satisfied if the large tube is to have little effect on
the natural frequencies of the narrow tube is that the magnitude of its reactance, which is
I(pc/Az)tankt'zl, be small compared to that of the narrow tube. which is l(pc/AI)cotkt'll. At
most frequencies, this criterion is satisfied ifAz »AI.

5. These results were derived in section3.3.1 only for the uniform tube configuration. but they
can be shown for the more generalcase.

6. This bandwidth is calculated by determining the radiation impedance at the 2-anz mouth
opening. calculating the impedance 2 an behind this opening. and using this impedance for the
load that terminatesthe narrow O.6-anz section.The length of this narrow sectionis adjusted so
as to rnamtain a natural frequency of 2950 Hz,

7. The calculations on which this graph is based assume that the first formant is a Helmholtz
resonance. A more precisecalculation for higher valuesof Fl would show the effect of the walls
to be even less than the figureindicates.

8. Equation (3.58) for the bandwidth assumes that the impedance terminating the posterior end
of the vocal tract is simply the impedance of the glottal slit. This impedance is in fact in series

with the impedance looking into the subglottal ~tem. The subglottal impedance also has a
resistive component, and hence the resistive component of the total impedance is greater than
the valueused in derivingequation (3.58). Consequentlyequation(3.58) gives bandwidthvalues
that may be somewhat high.and prOvides approximateupper limits to the bandwidth contribu­
tion due to glottal and subglottallosses.

9. Thesecalculations neglect the effect of the subglottalimpedance, whichmay have an inlIuence
on the fonnant frequency, particularly for larger glottal openings.See note 8.

10. For certainconsonants, suchas /sior /i/, the lower teeth form an obstacle that is partially in
theairstream. and is closeto the constriction. and a small negativecorrectionshouldbe appliedto
the spectrumamplitudeof the source.See discussion of fricative consonants in section 8.1.

11. The assumption of no interaction is only an approximation, and is made here simply to
illustratethe nature of the transfer function expected for thisconfiguration.

Chapter 5

1. For a discussion of some principles governing the constraints on consonant sequences, see

2. For a more complete discussion of the organization of features in a treelike structure, see
Oements (1985) and Keyser and Stevens(1994).

3. These conventions for omitting feature specifications are not adhered to rigidly in tables 5.3
and 5.4. For example, the features [spreadglottis] and [constricted glottis] are not distinctive in
English. but they are nevertheless often specified in tables of thiskind. The question of under­
sped£ication of features is a large and controversial one, andwill not be discussedhere.

Chapter 8

1. We neglect here any active increase that may occur in vocal fold stiffness for a voiceless
obstruent. This increasedstiffness can contribute to inhibitionof vocal fold vibration during the

Notes to pp. 134-381
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consonant.The role of changes in vocal fold stiffness to facilitate or inhibit glottal vibration for
obstruents is discussed in section 8.4.

2. Data for Polishare reported in Halleand Stevens(1991b).

3. Themodel of figure 8.39, in which the glottal end is closed. gives only an approximateesti­
mate of the dipole component of the aspiration noise source. A more accurate model should
include the impedance of the constricted glottis. If this impedance were included in the model.
the lowest zero would not beat zero frequency but would be at a higher frequency. For exam­
ple, this frequency would beat about 1400 Hz for the source at 2.S cm. This reEinement of the
model would influence the estimation of the dipole component at lower frequencies. However,
in the frequency range below about 2 kHz. the monopole source is the dominant source.That
source spedrinn is not influenced by the glottal opening. Consequently, although use of the
model of figure 8.39 may give a poor approximation to the effective dipole sOW'Ce at low fre­
quencies, the error in the overall sourcespectrumin figure 8.40is probably small.

4. Themaximum will occur slightly later becausethere is a small delay (of about O.S ms)as the
air flows from the glottis to the epiglottis where the high-frequency noise is generated.

. Chapter 9

1. Strictlyspeaking. two poles suchas RI and R2 cannot intersect, as figure 9.3a shows.Sinceat
the point of intersection the acoustic coupling to the nasal cavity is small, these two poles can
becomevery close.

2. In some languages there are liquidconsonants for which turbulence noise is produced at the
constriction fanned by the tongue blade (d. Catford. 1977;Maddieson. 1984).In thissection we
consideronly liquidsthat are sonorant.

3. The method for calculating the bandwidth increasedue to the resistance of the constrictionis
similar to that used in section9.2.2 for the glide Iil.

4. Using an x-ray microbeam system.Westbury et al. (199S) have shown that different speakers
use a wide range of tongue shapes to produce /r/. Their acousticanalysisof these productionsof
/r/ shows little relationbetween the differenttongue shapes and the resulting fonnant patterns.

Chapter 10

1. In this example, it could beargued that the features in the segments M and 1nl are merged
into one segment, and that all the features are accounted for in the sound. albeit in modified
form. In this view, reduction to syllabic /r)./ would not beconsidereda feature change.

Notes to pp. 38I-S80
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Acoustic losses in vocal trad. See Bandwidth
Acoustic wave propagation. 137-138
Acoustical elements

acoustic compliance, 141
acoustic mass, 25n. 140-141

Affricates, 412-422
aerodynamic model 413-415
airftow in, 415-416
example, 419-421
mcation noise, 417-418
measurements, 421-422
transient at release, 416-417

Airflow
in affricates,415-416
in aspirated consonants, 33, 424, 453, 456
in mcatives, 33, 383-384
in stop consonants, 327, 332-334, 453­

456
in tubes, equations for, 27-32
in vowels, 33, 35

Alveolar mcatives, 398-403
examples, 400-402, 482, 484
mcation noise spectrum, 398-399
measurements, 403

Alveolar stop consonants, 355-364
comparison with labiaL 364-365
examples, 362-365, 473
fonnant transitions, 355-357
transient at release, 359-360
turbulence noise, 360-362

Articulatory kinematics, 38-48
Arytenoid cartilages, 6, 8, 87-89, 423

vocal processes, 6
Aspirated stop consonants

airftow for, 453-456
examples, English,458, 462
example, Gujarati, 478
model for, 451-453

Aspiration
airftow for /hI, 424

examples, 434-436
glottal source for /hi, 424-428
measurements, 437
model for aspiration noise, 428-432
and subglottal resonances, 437-441
and supraglottal constriction. 441-445

Auditory nerve responses
adaptation. 217-218
to clicks, 214
to consonant-vowel syDables, 222-223
to tones, 214-217
to vowels, 219-222, 266, 273

Auditory perception
duration. 228-229
high vowels, 267
just noticeable differences, 225-228
loudness, 225-226, 235-237
non-high vowels, 273
pitch, 227-228
temporal order, 228-229
thresholds for tones, 224-225
vowels, 238-241, 265, 267

Bandwidth of vocal-tract resonanees
from airftow, 163-165
discrimination of,226
general equation. 153
for glides, 518-519, 523-524, 527-528
from glottal impedance, 165-167
from heat conduction. 161
for liquids, 534, 537, 546
measurements for vowels, 258-260
from radiation impedance, 153-156
from viscosity, 160-161
from wall impedance, 157-158

Bark scale, 237
Basilarmembrane

response to click. 210
sinusoidal response, 207-209

Breathy voicing, 85-91,425-426,445-450
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Central auditory pathwayS, 212-213

Clicks, 121-124

Cochlea
anatomy, 205-207

equivalent circuit, 209

mechanics, 207-209

Consonant sequences

examples of cross-word-sequences, 567
example of fricative-nasal, 566

examples of fricative-stop, 558

examples of stop-liquid. 560, 565
interaction of voicing for consonant

sequences, 568-571

at syllable onset, 557-565

Consonants, voiced. 465-485

aerodynamic model 466
aerodynamic parameters for voiced aspirated

stop, 475

aerodynamic parameters for voiced

fricatives, 480

aerodynamic parameters for voiced

unaspirated stop, 469

example of voiced aspirated stop, 475-476
examples of voiced fricative, 482, 568-570

example of voiced unaspirated stop, 472-

473

Consonants, voiceless. See Aspirated stop

consonants; Fricative consonants
Cricoid cartilage, 6,13-15,466

Critical bands, 235-237

formula, 237

Critical ratio, 235-236

Diaphragm. 2
Distinctive features. Su Features

Epiglottis, 13, 16, 429
Extemal ear, 203-204

directional characteristics, 204

Features, 243-244

articulator-bound. 249-255

articulator-free, 245-249

tables, 245, 253, 254, 284

underspeci£ication of, 253-254, 254n

Formant. See also Natural frequendes

defined. 131, 131n
equivalent second-fonnant frequency, 241,

289
frequency discrimination. 228
for uniform tube, 132-133

Fricative consonants, 129, 379-412, 477-483.

See also Labial fricatives; Alveolar fricatives;

Palatoalveolar fricatives

Index

aerodynamic model 380-384

auditory nerve responses, 22J
low-frequency acoustic model, 384
noise source, 10S-112, 387-389

Glides, 513-532

examples of labial glide, 525

examples of palatal glide, 531

first-formant frequency, 518, 521-522

glottal waveform. 519

low-frequency models, 517, 518

minimum constriction size, 514

model for labial glide, 523-524
model for palatal glide, 526-527

Glottal sound source. See also Aspiration

breathy voidng. 85-92

derivative of flow, 68, 72
effect of airways, 66-68, 93-94

for glides, 519

for liquids, 534, 549

measurements, 71

models of periodic source, 97-100

periodic flow, 65, 66

pressed voicing. 82-85

Glottalization. 565-566

Glottis, 1,34-37. See also Vocal folds, control

of position
cross-sectional area for consonants, 37, 327,

382,415,424,452

Hair cells, 211-212
efferent fiben, 212

Helmholtz resonator, 141-142

Hyoid bone, 8, 13

Labial fricatives, 389-398
example, 394-396, 472

frication noise spectrum. 389-392

measurements, 397
Labial stop consonants, 340-354

examples, 352-354, 472

formant transitions, 340-344

transient at release, 348
turbulence noise, 349-351

Landmarks,245-249

Larynx
anatomy, 5-15

cartilages, 5-8

lowering. 13, 251, 466-467, 470

raising. 22. 251

ventricular folds, 5

Lateral consonants, lSO, 543-555. See also
Liquid consonants

amplitude changes, 552
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asymmetry in intervocalic position. 549-550
examples, 535, 550-553
fonnant frequencies, 552
model for, 195-196,536
spectrum shape, 547-548

Lips, 24-25
dimensions, 24-25
movements, 45-46, 326, 341
rounding, 25, 44, 250, 290-294

Liquid consonants, 532-555. See also Retroflex
liquid consonants; Lateral consonants

first-fonnant frequency, 533-535
glottal source for, 534
minimum consbidion size, 533

Lungs, 1,2,3
functional residual capacity, 2
pressure, in speech, 4
vital capacity, 1, 2
volume, 2

Mandible, 21-24
Masking

by noise, 229-232
by tones, 232-235

Middle ear, 204-205
transfer function, 205

Modal voicing, 59
Muscles

cricothyroid, 7, 8, 251, 471
cricopharyngeal 8, 14-15
digasbic, 13
external thyroarytenoid, 8
genioglossus, 15,22,262, 263, 272, 468
hyoglossus, 22, 269
intercostal 2
inbinsic, tongue, 22, 26, 263
lateral cricoarytenoid, 8
levator veli palatini, 18
middle ear, 205
mylohyoid, 22, 24

middle ear, 205
oblique and transverse arytenoid, 8
palatoglossus, 18, 22
palatopharyngus, 18
pharyngeal constrictors, 8, 13, 15, 16, 270
posterior cricoarytenoid, 8,471
sternothyroid, 13
styloglossus,22,283
stylohyoid, 13, 466
thyrohyoid, 13,466
vocalis, 9

Nasal cavity, 17-20
acoustic properties, 189-191,307,489

Index

dimensions, 19,20
equivalent circuit, 306
sinuses, 19, 20
surface properties, 190

Nasal consonants, 487-514
abruptness at closure and release, 505
acoustic model for alveolar, 499-501
acoustic model for labial 494-497
acoustic model for velar, 508-509
auditory nerve responses, 223
examples of alveolar, 492, 502-504
examples of labial, 492, 498-500
examples of velar, 510-512, 514
low-frequency model, 489-493

mechanical model, 488
transfer function, 193-194

Nasal vowels
acoustic theory for, 190-193, 307-311
effect of sinuses, 189-190,315,318-319

effect of velopharyngeal opening, 312-313
examples, French, 318-321
examples, English, 317-318, 320-322, 576-

577
measurements, 316-322
model for, 188, 192,305
transfer function, 191-193, 311-316

Natura1 frequencies of resonators
coupled resonators, 142-148
Helmhotz resonator, 141-142
uniform tubes, 138-140

Obstruent consonants, 249, 379. See
also Fricative consonants; Stop
consonants

Palate, 20-21,23,24,263-264
Palatoalveolar fricatives, 403-411

example, 407-410
frication noise spectrum, 406-407
measurements, 411
model for, 404-405

Perturbation of resonators, 148-152, 284­
286,529-530

Pharynx, 15-17,25-26,261,270,276. See
also Tongue root

expansion for consonants, 466, 468
turbulence noise in, 445

Pinna, 204
Pirifonn sinus, 16
Pressed voicing, 82-85
Pressure-flow relations

through consbiction in tube, 29-32

in unifonn tube, 27-29
in vocal trad, 32
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Quantal theory, 148

Radiation characteristic, 67,127-128,199­

200

directional characteristic. 199-200
from vocal tract walls, 200-202

Radiation impedance, 15.3
Resonators, excitation of

by glottal noise source, 171-175

by periodic glottal SOl.lJ'Ce, 168-170
principles, 167-168
by sources above the glottis, 175-187

by transients, 184-187
Respiration. 1-5

dynamics of, 49-51
equivalent circuit, 4, 49
kinematics of, 40, 41

Retroflex liquid consonants, 535-543. See also
Liquids

bunched tongue blade, 540
examples, 5.35,541-544
fonnant frequencies, 544

model for, 5.36
spedrum shape, 5.37-5.39

Reynolds number, 28, 29, .34,35

Rounding. See Lips

Sinuses, nasal, 19-20, 189,315

Source-filter theory, 128-1.30
Standing waves, 1.39-140
Stop consonants, unaspirated. See also Labial

stop consonants; Alveolar stop consonants;

Velar stop conson.mts
acoustic models, 146-148
aerodynamicmodels,51-5.3,II.3-115,.324-

326,331
airflows and pressures, .331-.3.34
auditory nerve responses, 223
first-fonnant transitions, .3.34-.340
release mechanisms, 118, 329
release rates, 44-48, .326

Stop consonants, voiceless aspirated. 451-
465. See also Aspiration

aerodynamic model 452-453
airflow, 45.3-456
examples, 461-464
noise sources, 457-460
noise spectra, ~461
voicing onset, 455-458

Subglottal cavities

acoustic properties, 165n. 196-197,4.38­
440

effect on aspirated consonants, 437-440

Index

effect on vowels, 196-198, 299-30.3
model of,66,91-92,197,4.38

Subglottal pressure, range for speech, .35,71
Suction. See Clicks
Supraglottal airways

aerodynamic model 51-5.3, .326, .331, 453
anatomy, 15-27

Syllabic nasal, 569, 5SOn

Thorax, 3
Thyroid cartilage, 6
Tongue, 21

kinematics, 42-4.3, 47-48
volume, 24

Tongue blade, movements, 46-47, 326
Tongue body

features, 250-252
movements, 43, 236
position for vowels, 261, 269, 271

Tongue root, 15,269,468
advanced, 251, 295
constricted, 251

movements, 42-4.3
Trachea, 1. See also SubglottaI cavities

Transfer function of vocal tract
all-pole form for vowels, 130-135

effects of multiple paths, 195-196
effects of side branch, 194-195
general form, 1.30

Transient sources, 117-121

model for, 117
spedrum of, 120

for stop consonants, 348
Turbulence noise sources. See also Aspiration

dependence on 80w, dimensions, 10.3
dipole source, 102-104
at glottis, 102, 108-109, 115-116, 171-175,

.347-348,428-436,442-450,457-460,

477,577
model of, 102
monopole source, 106-107

noise bursts for stop consonants, 112-115,

347-.348
simultaneous with glottal vibration, 115­

116
sources at two constrictions, 108-112

spedrum of source, 104, 107
Tympanic membrane, 204-205

Uvula, 21

Velar stop consonants, 365-.377

examples, 372-.375
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fonnant transitions, 365-367
transient at release,369-370
turbulence noise, 370-372

Velopharyngeal opening, 17, 18, 43-44, 307­
308,487-488

Velum..17
kinematics of, 43-44

Ventricular folds, 5, 429
Vibration of supraglottal structures, 124-126
Vocal folds, 7-13

control of position. 6, 8,12, 42, 87-91, 251,
382, 415, 424, 452, 578-579

control of stiffness, 7, 8, 12,41,251,451-
452, 467, 469-470, 483,569-571

dimensions, 9, 11-12
layered structure, 9
mechanical properties, 10-12,41,96
supporting structures, 5

Vocal-fold vibration See also Breathy voicing;
Glottal soundsource

conditions for vibration. 80-82, 471
effed of pressure changes, 75-80
effed of stiffnesschanges, 72-75,469-471
effed of supraglottal constriction. 92-97,

519,534
effect of vocal-fold position. 82-92, 424­

428
mechanism of,56-64
two-mass model. 57

Vocal tract dimensions
for fricatives, 37
length. 25-26
for liquids and glides, 515-517, 521. 533,

536, 545-546
volume, 24
for vowels, 17,23,33,37

Vocal trad walls
effects on bandwidth, 157-158
effects on fonnants, 158-160, 262
expansion of, 406-470
mechanical properties, 26, 53, no, 156-158
stiffening and sIaclcening, 468-471, 569-571

Voiced consonants. See Consonants, voiced
Vowels

auditory nerve responses, 219-222
front-back distinction, 273-284
high vowels, 260-268
influenceof context on, 572-574
low vowels, 268-271
nasal (see Nasal vowels)
nonhigh, nonlow vowels, 271-273
perception of (see Auditory perception)
reduced vowels, 574-579

Index

rounding. 290-294
spectrum of, 170-171
tables of fonnant frequencies, 288
tense-lax, 294-299
transfer function. 129, 130-135, 168-170

Webster horn equation. 138

Young'smodulus, 10


